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A quantity of vital engineering materials is example of two-phase 
materials in which each phase may be polycrystalline. In numerous cases, both 
phases of these materials may undergo grain growth which may affect their 
electrical and mechanical properties. Therefor, substantial efforts have been 
devoted to understand the microstructural evolution of polycrystals to improve 
their performance in microelectronic industries.  Numerical method based on 
Monte Carlo Potts model is used to investigate microstructural evolution of 
two-phase polycrystalline materials in which grain growth in both cases is 
controlled by grain boundary diffusion (n=4).  It is shown that the 
microstructural evolution of two-phase polycrystals eventually reaches an 
asymptotic regime in which grain growth in both phases is coupled due to 
Zener pinning and obeys a power-law relationship d~t1/n .  This conclusion is 
valid in a broad parameter range and is compatible with theoretical 
predictions and laboratory experiments.       
 

1. Introduction: 

Most important metallic and ceramic materials are polycrystalline.  
They consist of small grains which are glued together by interatomic forces.  
When polycrystals are heated, they experience different changes with time, 
which governs the mechanical, thermal and electrical properties of the 
materials. Therefore, it is a critical issue to understand the process of grain 
growth in engineering materials.   
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Grain growth is a process in which grain size of single-phase 
polycrystalline material increases with time, driven by the reduction in the total 
grain boundary energy. The value of the grain growth exponent for pure metals 
and ceramics is 2 (Beck et al., 1948; Burke, 1949; Burke and turnbull, 1952).  It 
can be obtained with the assumption that the energy difference across curved 
grain boundaries ∆G (the driving force) is inversely proportional to the grain 
size d.  Assuming that the rate of change of the grain size is proportional to the 
driving force ∆G, we get d~t1/2 which can be written in more general form  

 
d = kt1/n                                                                                                          (1) 

                                                                        

where n is the grain growth exponent and k is the grain growth constant.  Since 
the velocity of grain boundary is controlled by the rate at which atoms jump 
across the boundary, the typical diffusion distance for atoms associated with 
grain boundary migration is on the order of the boundary width which is about 
2 or 3 lattice parameters for a pure metal. Experimentally determined values of 
grain growth exponent for a variety of metals and ceramics vary from n~2 to 4 
(Anderson et al., 1984).   
 

On the other hand, Ostwald ripening is defined as the process during 
which large second-phase particles grow while small particles reduce in size 
and disappear.  Thus, the interfacial energy between the matrix and the second 
phase is reduced.  The driving force is the difference in the chemical potential 
of atoms in small and large particles of the second phase.  Atoms detached from 
small particles of the second phase must diffuse through the matrix to attach to 
large particles of the second phase so that large grains grow at the expense of 
small particles. Consequently, the typical diffusion distance for atoms is on the 
order of the partition distance between particles of the second phase.  The grain 
growth exponent for Ostwald ripening of particles in polycrystalline materials 
is n=3 if grain growth is controlled by volume diffusion (Lifshitz and Slyozov, 
1961; Wagner, 1961), n=4 in case of grain boundary diffusion controlled grain 
growth and n=5 for diffusion on dislocations (Ardell, 1972).  If grain growth is 
controlled by surface nucleation then Ostwald ripening obeys a logarithmic 
rather than power-law function of time (Solomatov and Stevanson, 1993).  In 
this case the value of n can be random large.    

 
Grain growth and Ostwald ripening may happen concurrently, 

especially, in multiphase polycrystalline materials. These materials such as 
ceramics and metallic alloys have important engineering applications.  
Particular examples are the ZrO2-Al2O3 two-phase in ceramics (French et al., 
1990; Lang et al., 1987; Alexander et al., 1994) and the near eutectic solder 
alloys which are commonly used in electrical, mechanical and thermal 
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interconnects between an integrated chip or component and a substrate or 
printed circuit board (Satoh,1993). If the second-phase particles were stable, 
grain growth in the major phase would stop as soon as the grain size reaches 
some maximum value which is proportional to the second phase grain size 
(Smith, 1948).  If the second-phase particles undergo Ostwald ripening, the 
grains of the major phase can grow too.  Hillert (1965) and Gladman (1966) 
proposed that after an adequately extended time, grain growth in two-phase 
systems in which both phases grow is controlled by Ostwald ripening of the 
dispersed particles and is coupled due to Zener pinning.  There is experimental 
proof of such coupled growth (Mader, 1965; Holm et al., 1977, Garwel and 
Ankem, 1989, 1990a, 1990b; Higgins, 1992; Ankem, 1992, Alexander,194) and 
in numerical  simulations (Fan, 1997, 1998; Chen, 1996, Solomatov et al., 
2002).The grain growth exponent for both phases is similar and corresponds to 
one of the mechanisms of Ostwald ripening.   

 
The main purpose of this paper is to systematically study the kinetics of 

grain growth and Ostwald ripening in two-phase polycrystalline materials by 
employing computer simulations based on the Monte Carlo Potts approach.  In 
these systems, the grain boundary migration of the major phase is pinned by the 
second phase particles which coarsen through long range diffusion.  Based on 
the computer simulation we will determine the grain growth exponent and the 
grain growth constant.  Additionally, the effect of Zener pinning on grain 
growth of the major with growing second-phase particles will be determined, in 
a term that, after sufficiently long time the ratio of the major phase grain size to 
the second phase grain size will be constant whose value depends on the 
volume fraction of the second phase. 

 

2. Simulation Methodology: 

In this study, numerical method based on the Monte Carlo Potts model 
is used to investigate grain growth in two-phase polycrystalline materials. It 
was developed more than four decades ago as an extension to the ferromagnetic 
Ising model for magnetic domain evolution (Potts, 1952).  The Ising model 
(1925) represents a magnetized material as a collection of spins where only two 
states are possible, namely up or down.  Potts later generalized the Ising model 
and allowed for Q states for each particle in the system.  Although this model 
has been developed a long time ago, not until much later, it was very successful 
in describing the grain growth in polycrystals. The reason for this is a similarity 
between the ferromagnetic Potts structures and grain structures; both are being 
characterized by an array of cells having the same spin or crystal lattice 
orientation.  These cells are separated by boundaries which evolve in such a 
way as to minimize total interfacial energy.  
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The two-phase polycrystalline material is treated as two-dimensional 
triangular array of sites.  Each site is assigned a spin, qi, which corresponds to 
the orientation of the grain in which it is embedded.  Lattice sites that are 
adjacent to sites having different grain orientations are regarded as being 
separated by a grain boundary, whereas a site surrounded by sites with the same 
orientation is in the grain interior.  The sites that correspond to the major phase 
(phase A) are given positive numbers. The sites correspond to the second phase 
(phase B) are given negative numbers. 

 

The total system energy is dependent only on the spin exchange energy 
which can be written as follows: 

 

[ ]∑∑
= =

−=
N

1i

6

1j
ji )q,δ(q1

2

1
  E                                      (2) 

 

where N is the total number of sites, δ is the Kronecker delta function and qi  is 
the spin of ith site. The only energy considered in the simulation is the 
interfacial energy; therefore, for any pair of sites, different spins result in an 
interfacial energy of unity and same pins result in an interfacial energy of zero.    

 

The microstructure evolved as a result of grain growth boundary 
migration and long-range diffusion. The grain boundary migration is simulated 
by picking a site and a new orientation at random from the set of allowable 
values. The change in total system energy ∆E for reorienting the site is 
computed, and the reorientation is implemented with the transition probability,  
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The long-range diffusion is simulated by spin exchange between the phases. A 
site and its neighbor are selected at random. If the two sites belong to different 
phases, they are allowed to exchange their spins. The change in total system 
energy ∆E for the spin exchange is calculated, and the spin exchange is 
determined by using the full Arrhenius function, 
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where kB is the Boltzman constant and T is the temperature. If the energy 
change is negative or zero the move is accepted.  If the energy change is 
positive, a random number R between 0 and 1 is generated such that if R≤P the 
change will be accepted. 
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One Monte Carlo time step (1 MCS) is typically defined as N 
reorientation attempts, i.e. each site is given an opportunity to change 
orientation.  The number of Monte Carlo Steps is assumed to be proportional to 
physical time.  Time is incremented after each attempt spin flip by 1/N MCS.  
The temperature for spin exchange is T=0.7.  The reason for choosing this 
value is to low-temperature regimes which gives low-grain growth exponents. 

 

The structure of a two-dimensional two-phase polycrystalline material 
is represented with the help of a 400X400 triangular lattice.  Each site 
represents a group of atoms with a particular spin.  Although in reality, the 
spins range is continuous, the results do not depend on the values of spin, Q 
(Anderson et al., 1984; Sahni et al., 1983; Grest et al., 1988).  The value Q=100 
is adequately large to eliminate the effect of coalescence; therefore, it is used in 
all our simulations.  The controlling parameters of the two phases are chosen to 
be identical.  This means that the case with a volume fraction of fv of the second 
phase is equivalent to one with a volume fraction (1-fv) of the major phase and 
vice versa.  Various volume fractions of the second phase are considered. 

 
3. Simulation Results: 

3.1. Grain growth kinetics in two-phase systems 

Microstructural evolution corresponding to grain growth in two-phase 
polycrystalline materials with volume fractions of phase B varies from 10% to 
50% is displayed in Fig. 1. The fraction 0% B in Fig. 1 represents grain growth 
in one-phase polycrystals for comparison. In these microstructures, the grains 
of phase A are white and the grains of phase B are gray.  Grain growth kinetics 
is described by Eq. (1). The slope of a straight fit through this log d versus log t 
plot by least-square fitting is the inverse of grain growth exponent, 1/n. The 
average grain size is drawn as a function of time in Fig. 2, with various volume 
fractions, fv, in the one-phase material, fv = 0.  As shown in Fig. 2, the grain 
size initially evolves pretty slowly but eventually reaches the asymptotic regime 
consistent with d α t1/n. The early time transient is due to the initial conditions. 
In fitting the data shown in Fig. 2 to determine the grain growth kinetics, we 
found that the results were sensitive to the time regime examined.   

 
When all the data for time t>10000 MCS was included in the least 

square fit to Eq. (1), the grain growth exponent and the rate constant obtained 
for various fv are shown in Fig. 3 and Fig. 4. As can be seen from Fig. 3, in one-
phase system, the inverse of grain growth exponent 1/n is close to 0.5 in 
agreement with previous simulation results (Anderson et al., 1984; Sahni et al., 
1983; Grest et al., 1988). In two-phase systems the value of 1/n for phase B is 
close to ¼ estimated for grain-boundary diffusion controlled grain growth. For 
Phase A, the value of 1/n goes higher than 1/n as the volume fraction increases.  
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The reason for this is that the grains of phase A are interconnected and grow 
via grain growth; in addition, to long range diffusion via grain boundary 
migration. As shown in Fig. 4, the rate constant k for phase B is higher than the 
rate constant for phase A. As the volume fraction of phase B increases the value 
of k increases, while the value of k decreases as the volume fraction of phase A 
increases.  The ratio of the rate constant of phase A (kA) is to the rate constant 
of phase B (kB) is drawn as a function of volume fraction fv in Fig. 5.  As can be 
seen from Fig. 5, the ratio kA/kB increases linearly as the volume fraction of 
phase B increases and decreases linearly as the volume fraction of phase A 
increases. This relation can be expressed as 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                 
 
 
 
 
 
 
 
 
 
 
Fig. (1): Microstructural evolution in a two-phase system having different fractions of the 
second phase, B. The fraction 0% B indicates grain growth in one-phase system. System size 
is 400X400 triangular lattices.  Phase A grains are white and phase B grains are gray.   
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Fig. (1): (Continued) 
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Fig. (2): Time dependence of the mean grain size for grain growth simulation in two-

phase systems.  The ratio of each phase is indicted.  The fraction 100% A 
corresponds to grain growth in one-phase system. 
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Fig. (3): The inverse of grain growth exponent, 1/n, as a function of volume fraction, fv. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (4): The rate constant, k of grain growth as a function of volume fraction, fv. 
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Fig. (5): Ratio of the rate constant of phase A (kA) to the rate constant of phase B (kB) 
versus volume fraction fv. 
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where fA is the volume fraction of phase A and nA is an impedance exponent 
depends on the volume fraction. This relation is consistent with the 
experimental results (Grewel and Ankem, 1989; 1990). 
 
3.2. Zener pinning with growing second-phase particles 

Zener pinning is a phenomenon in which second-phase particles impede 
the grain growth of the major phase by pinning the motion of grain boundaries.  
The pinned growth state occurs when the grains of the major phase would reach 
limited size which is proportional to the size of the second-phase particles.  The 
relationship between the limited grain size and the second phase parameters can 
be expressed as  
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Fig. (6): The grain size of phase A versus the grain size of phase B. The fraction of the 

second phase is shown in the figure. 
 
 

Bm
v

A d 
f

c
  d =                                                           (5)  

 
where dA is the grain size of the major phase, dB is the grain size of the second-
phase, c and m  are constants. The value m=1 was considered by the early 
Zener model (Smith, 1948).  Under certain conditions, it was proposed that the 
value m=1/2 for nonrandom, two-dimensional systems (Srolovitz et al., 1984; 
Doherty, 1987) and m=1/3 for high-volume fractions, three-dimensional 
systems (Hellman and hillert, 1975; Hillert, 1988; Hassold et al., 1990).   

 
The present simulation result of the relationship between dA, dB and fv is 

shown in Fig. 5.  The average grain size of phase A (dA) depends linearly on the 
grain size of the second phase B (dB) for all volume fractions of the second 
phase from 10% to 40% which agrees well with experimental results 
(Alexander et al., 1994). 
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4. Conclusion: 

The kinetics of grain growth and Ostwald ripening in two-phase 
polycrystalline materials have been studied using computer simulations based 
on Monte Carlo Potts model.  The same model have been used to investigate 
Zener pinning in the presence of growing second-phase particles.  The 
simulation results show that the growth kinetics of both phases are controlled 
by long rang diffusion and follow the power-growth law Eq. (1) with n=4. The 
rate constant of phase A (kA) varies linearly with the rate constant of phase B 
(kB).  The remarkable variation comes from the different diffusion distances of 
the two phases during growth as the volume fraction changes.  For the low 
volume fraction of phase B, the growth kinetics are controlled by ostwald 
ripening and the typical diffusion distance is on the order of the typical distance 
between B-phase grains.  However, for the high volume fraction of A-phase, 
the grain growth kinetics depends on the grain boundary width that is pinned by 
B-phase grains and the volume fraction of phase B.  A linear relation between 
A-phase grain size (dA) and B-phase grain size (dA) is found for all volume 
fractions of phase B which are compatible with experimental results. In 
conclusion, our simulation results present an independent support for the Hillert 
(1965) and Gladman’s (1966) proposal that microstructural evolution of two-
phase systems ultimately reaches an asymptotic regime in which grain growth 
in both phase is coupled due to Zener pinning and is controlled by long range 
diffusion.  
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