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We report on a new synthesis method of reflection filters with 

multilayer and waveguide structures. The filter is characterized by bandwidth 
as small as ≤ 1 nm for effective use in wavelength-division-multiplexed optical 
communications. Both the transfer-matrix method and the Fourier 
transformation are employed to determine the filter reflection from a spatially 
varying refractive index. In contrary to Bragg reflectors that utilize periodic 
index variations, the present synthesis model employs aperiodic variation 
around an averaged index. The calculations show that the reflectivity spectrum 
for 25 pairs of periodic GaAs-AlGaAs quarter-wavelength Bragg stacks is a 
single band with broad plateau ( ≥  100 nm) surrounded by high lobes (> 80%). 
We show that these side-lobes are suppressed to less than 40% when the same 
number of layers is used but with an aperiodic varying thickness. Moreover, by 
exceeding the filter length to 2 mm, we achieved reflectors with 99% reflectivity, 
bandwidth of ≤ 1 nm and low side-lobes (<-13dB). Similar characteristics are 
attained using a GaAs/AlGaAs waveguide with a corrugated structure on the 
upper interface of the core. The corrugated profile of the core-thickness is 
obtained for an asymmetric waveguide. We also demonstrate accomplishment of 
two-band reflectors for use as minus (transmission) filters. 
 

1. Introduction: 

Wavelength-division-multiplexing (WDM) is an efficient technique to 
enhance the information capacity in optical communications systems [1]. The 
main function of WDM is the effective use of the fiber bandwidth, which 
exceeds several terahertz in the low-loss window at λ~1.5 µm, by simultaneous 
sending of multiple channels with slightly different wavelengths, as shown 
schematically in Fig. (1). Optical (transmission or reflection) filters then play 
important role as wavelength-selective device to route each transmitted signal to 
the detectors. The bandwidth of the filter should be less than the wavelength 
separation of fiber channels, which is in the range of 1 nm. Synthesis of high 



W.Z. Safwat et al. 124

output filters with such narrow bandwidth around 1.5 µm is a challenge of 
research. 
 

Design procedures of reflection filters are based on causing spatial 
variation of the refractive index in such a way to increase the filter reflectively 
around a desired wavelength by multireflections. The index variation is then 
translated into variation of an appropriate structure parameter of the filter. Such 
index variation may be done periodically [2-8], such as the common Bragg 
reflectors, or aperiodically [9-12], which can then be employed by the transfer-
matrix method to calculate the reflectivity spectrum [13-16].  
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Fig. (1): A scheme of a wavelength-division-multiplexed optical 

communication system. 
 
 
 

On the other hand, the aperiodic-type design helps to reduce the side-
lobes, vary the bandwidth and attain output spectrum with multi-bands [14-16]. 
However, a guide to the profile of the spatial index variation that corresponds to 
the desired output spectrum is essential to approach to the optimum index 
profile. Some authors determined this guide as inverse Fourier transformation of 
the reflection coefficient [14,15], however accuracy of this relationship 
deteriorates dramatically with decreasing the bandwidth. Then careful 
techniques are required to optimize such approximate guide of index variation 
so as to fit the reflectivity spectrum calculated by an accurate method (such as 
the transfer-matrix method) to desired spectrum [14]. 

In this paper, we are aimed to introduce a proposal of optical filters with 
bandwidth as narrow as ≤ 1 nm. The filter configuration is introduced in both 
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dielectric multilayer and upper-interface-corrugated waveguide structures 
normal to the direction of propagation of light. In the former, the index variation 
is translated into variation in the layer material or thickness, and into variation 
in the core thickness in the latter. We introduce detailed comparison of 
employing the periodic Bragg reflectors in the filter design with the present 
aperiodic structure. In the waveguide filter, we newly introduce the analysis in 
the general case of asymmetric-waveguide type assuming oscillation of the 
fundamental transverse mode. We, furthermore, demonstrate accomplishment of 
two-band reflectors that can be used as minus (transmission) filters. 

 
The paper is structured as follows. In the following section, we 

introduce the theoretical proposal of the filter design in both multilayer and 
corrugated waveguide structures. In section 3, we present the desired spectral 
characteristics of optical filters. An investigation of periodic Bragg multilayered 
reflectors and comparison to filters designed with aperiodically-varying 
refractive index will be given in section 4. In Addition, we demonstrate the 
results of the designed filters with bandwidth ≤ 1 nm, which include spectral 
characteristics of reflectivity and the spatial profile of the both multilayer 
thickness and the core thickness. We introduce an example to design a minus 
reflector. Finally, the conclusions appear in section 5. 
 
2. Materials and Methods 

     2.1. Relationship between index variation and reflectivity 

The considered model of optical filters is illustrated in Fig. (2). The 
refractive index is assumed to have a small variation ∆n(z) around an averaged 
value n  along the propagation z-direction of the optical wave. The wave is 
assumed to oscillate in the TE-polarization and is characterized by a 
propagation constant β.  

 
Due to such index variation, the optical wave suffers varying reflections 

which sum up at the input port (z=-L/2) and constitute the filter reflection 
coefficient which is approximately given by the Fourier-transformation (FT)-
like form of ∆n(z): 
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Therefore, for a specified profile r(β), the spatial profile ∆n(z) of a long enough 
filter is given by the inverse Fourier transformation (IFT): 
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The profile of index variation is assumed to have a periodic component 
such that the pitch is equal to n20λ=Λ  with λ0 as the wavelength of the 
exciting light. Such index variation can be achieved in a multilayer filter by 
spatial variation of the filter material along the z-direction or to fix the material 
and change the layer thickness. It is then practical to change such continuous 
variation of ∆n(z) to a rectangular type in order to reduce the number of 
materials as will be discussed latter. In a waveguide filter, the index variation is 
achieved by corrugating the upper core interface, which then causes variation of 
the core thickness. The notation of index variation ∆n(z) should then change to 
effective index variation ∆neff(z). 
 

 
Fig. (2): Spatial profile of ∆n in an approximate analysis by the Fourier 

transformation. 
 
 

2.2. Multilayer Filter and analysis by the transfer-matrix method 

For the design of a high performance optical filter, it is important to 
determine its reflectivity and transmittance in a dielectric multi-sectioned 
structure. In a multilayer structure, as shown in Fig. (3), the filter consists of an 
alternating sequence of high and low refractive index for N layers. The 
thickness and refractive index of the i-th layer are li and ni, respectively and 
consequently each layer is characterized by propagation impedance 
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Fig. (3): Schematic design of the aperiodic multilayer optical filter. 

 
 
The transfer-matrix method (TMM) is an efficient and accurate technique to 
analyze the propagating field in such a composite medium and calculate the 
reflection coefficient [17,18]. It simply relates the field components at the input 
and output ports through matrices characterizing the composing regions of the 
medium. Here we apply this method to calculate the reflection coefficient r(β) 
that corresponds to the approximate (guide) variation of the refractive index 
∆n(z) determined in the above part as the IFT of the desired spectrum. 

The electric and magnetic components in the i-th layer are given by 
 

)()()()()(  )( )()( iiii zzjizzjii ezBezAzE −−− += ββ       (3) 
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i
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where the phasor of each component is the superposition of two monochromatic 
plane waves counter-propagating in z-direction and having tje ω  harmonic time 
dependence. According to Fig. 3, A(i)(z) and B(i)(z) denote, respectively, the 
forward and backward field amplitudes of the wave at the interface izz =  in 
section i with ii zzz ≤≤−1 . 

 
In nonmagnetic materials, continuity of both the electric and magnetic 

fields is required at each interface, leading to a combination of the field 
components at the input side and the output side of the form  
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being a product matrix of the matrices characterizing the composing layers. In 
the external region of z > zN+1, there is no reflection i.e. BN+1=0 and Eq. (5) can 
be rewritten as 
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At 1zz = , the reflection coefficient is defined as the ratio between the backward 
and the forward traveling wave: 
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Similarly, the transmission coefficient is given by 
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2.3. Corrugated waveguide filter  

In a slab waveguide structure, as shown in Fig. 4, the effective index 
variation ∆neff(z) is achieved by employing a corrugation ∆h(z) on the upper 
interface of the core whose averaged thickness is h . The considered waveguide 
is of an asymmetric type with refractive indices nf in the core, ns in the cladding 
substrate and nc in the cladding cover.  
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Fig. (4): Scheme of the proposed optical corrugated waveguide filter. 

 
 

The light is assumed confined in the x-direction but diverged in the y-
direction (no guiding structure). The waveguide is characterized by a 
normalized index difference 222 2)( fsf nnn −=∆  and an asymmetry parameter 

)()( 2222
sfcs nnnna −−= . The normalized frequency of the waveguide is 

given by: 
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which determines the cutoff condition of the propagating m-th mode: 
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where ko is wavenumber in free space. Therefore the thickness that supports 
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and is determined in terms of the normalized index difference 
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In the waveguide filter, as given in Fig. 4, the corrugated region is 

assumed as decomposed into N equal thin rectangular sections perpendicular to 
the propagation z-axis as shown in Fig. (4). The length and averaged thickness 
of the i-th (i=1,2, …, N) section are ℓ=zi+1–zi and hi, respectively. The field 
components in the i-th section are then given by: 
 

{ } )(  )( )(),( )()()()()()( xFezBezAzxE izzjizzjii iiii −−− += ββ       (14) 
{ } )(  )( )(1),( )()()()()()( xEezBezAZzxH izzjizzji

i
i iiii −−− −= ββ       (15) 

 
The field distribution F(i)(x) is determined in terms of hi for the i-th 

section as [19]  
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where Ci is a normalizing constant of F(i)(x), κfi, γsi and γci are the eigenvalues 
characterizing the field propagation along the x-direction of the i-th element in 
the core, substrate and cover, respectively. They, along with λπβ )(2 i

effi n=  
satisfy the eigenvalue relations: 
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These equations are transcendental and should be solved numerically. 

Application of the TMM analysis to the waveguide filter results in the same 
expressions (8) and (9) of the reflection and transmission coefficients of the 
multilayer filter. However, accuracy of such analysis gets worse if higher 
transverse modes are supported by the waveguide structure.  
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3. Spectral Characteristics of Optical Filter 

The optical filter can be made with a single- or a multiple-stop band, 
depending on the type of application. Here, we presented filters with single and 
double-band spectra. 
 

3.1. Single stop-band filter 
The desired spectrum of reflectivity 

2
00 )()( ββ rR = of the single 

narrow-band reflector with bandwidth ∆β is described mathematically by the 
expression: 
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The spectral dependence is given in terms of the propagation constant β 
rather then the wavelength λ to make easier calculation of the index variation 
∆n(z) as the IFT of r(β) via Eq. (2). The negative wave number region (β<0) is 
also considered as ro(β)=-ro(β) to get real values for ∆neff(z). Such approximated 
spatial profile ∆neff(z) is then given by : 
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which is a beating oscillating function: the fast oscillation is represented by the 
sine-function and the Sinc-function gives the envelope of such oscillation.  
 

3.2. Double-band (minus) reflection filter 

A minus-reflection filter can be described by the two-rejection band 
expression of the reflection coefficient r(β): 
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This type of optical filter is very important for WDM applications. The 

width of the two stop bands ∆β can be made much wider than the separation in 
between in such a way that it can be used for multiple-channel WDM. The 
profile of ∆n(z) is then given by the form 
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 The continuous variation of ∆n(z) described by Eqs. (20) and (22) can 
be transformed to a rectangular type by means of a Fourier expansion: 
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Since the forms (20) and (22) of ∆n(z) are obtained for long-enough 

filters, a large number of materials will be required to realize such a multilayer 
filter if the layer thickness is kept constant ll =i . For more practical device, 
the filter can be designed with pairs of two materials with refractive indices nH 
and nL and )(i

Hl  and )(i
Ll  satisfying the transfer-matrix condition [15] 
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Such filter design requires transformation of the negative part of ∆n(z) to a 
positive one by: 
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The thickness of the higher-index layer )(i
Hl  is determined by the equation [15] 
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4. Results and discussion 

4.1. Limitation of periodic Bragg reflectors 

The solid curve in Fig. (5) shows the calculated reflectivity spectrum 
R(λ) for the case of periodic distributed-Bragg-reflector (DBR) using Eq. (8). 
The reflector consists of 25 GaAs and AlAs mirror pairs of refractive indices 
3.0 and 3.6, respectively. The curve has a broad spectral plateau (stop band) 
around the central Bragg wavelength where R(λ) ~ 100%. The width of the stop 
band is nearly 100 nm which represents a characteristic feature of the DBR as a 
resonator for laser production, namely the vertical cavity surface emitting lasers 
[20]. One drawback of the DBR method is the existence of side lobs around the 
stop band of reflectivity ≥ 80%. The corresponding aperiodic design is ahieved 
by employing Eq.(20) of the approximated profile of ∆n(z) after modulation by 
a parameter 2.18=u  and calculating the reflection coefficient via Eq. (8). 
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The obtained reflectivity spectrum is plotted in Fig. 5 with the dashed 
curve. This curve seems to be identical with that obtained from the periodic 
DBR especially in the stop band region, but the side lobes are dramatically 
suppressed. Having done the reflectivity spectrum, the modulated index profile 
is shown in Fig. 6. The profile reaches its maximum and minimum value of 3.6 
and -3.6, respectively at the adjacent central layers and then oscillates around 
the average refractive index 3.3=n  with a slightly degradation from the center 
to the outer edges at which the refractive index is 0.2% lower. Another typical 
drawback of the periodic filter design is the difficulty to obtain a narrow stop 
band around 1nm which will be overcome by the aperiodic design as given in 
the following subsections. 

 
4.2. Dielectric aperiodic multilayered reflector 

In order to decrease the bandwidth of the filter to the desired value, 
aperiodic design should be achieved. In this case, the bandwidth of the assumed 
spectrum in Eq. (19) is set as β=66.10-5β0 which corresponds to ∆λ~1nm. This 
case of narrow-band filter requires a large number of layers (i.e., long-enough 
filter) because the accuracy of calculating the reflectivity via the approximate 
FT-analysis deteriorates with deceasing the width ∆β. The approximated power 
reflectivity spectra for two lengths of 1 and 2mm are shown in Fig.7(a).   
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Of course, one sees the effect of increasing the filter length on the 
enhancing maximum reflectivity. This is attributed to the increase of the number 
of layers and consequently the increase of the reflected wave amplitudes. The 
approximated reflectivity spectra at 1 and 2mm filter lengths have 44% and 
68% maximum values, respectively, with width larger than the set value of 1 
nm. This means that there still requirements to improve these spectra to fit the 
assumed one especially in the stop band region. 
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This is realized for the case of 2mm filter length by reducing the band 
width to ∆β=93.10-6β0 and multiplying Eq. (20) by a modulation parameter 
u=10. The resulted reflectivity spectrum is illustrated in Fig. 7(b) by the solid 
curve which fits the desired one in the stop band region (dotted line) with 
maximum reflectivity of 97%, -3dB bandwidth ~ 1nm and side lobes lower than 
-13dB. The difference between the approximated index profile ∆n(z) and the 
modified one is clearly shown in Fig. 8(a), where the envelope of the former 
shows a higher decrease from the center to the outer edges of the filter than the 
latter. 
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profile ∆n(z) for optical lengths of 1 and 2 mm, and (b) one layer 
thickness )(i

Hl  for the 2.0 mm optical length. 
 
 
In the case of 2mm length filter, the number of layers with different 

refractive indices is 5334. That is, one needs a huge number of materials to 
design such a filter. Therefore, we change the design to utilize pairs of two 
materials (nH and nL) with thicknesses )(i

Hl  and )(i
Ll  as described in subsection 

2.2. This design is easier and commercial from the practical point of view. 
Figure 8(b) illustrate the spatial variation of one thickness, namely )(i

Hl . 
 

4.3. Corrugated waveguide reflector  

We use the material system AlxGa1-xAs/GaAs in the considered 
waveguide structure. The core is made of GaAs which has a bandgap energy of 
1.424 eV and wavelength λg~0.78 µm which is much shorter than the exciting 
wavelength λ0=1.5 µm. That is the material is treated as a dielectric for the 
incident light. The composition x of the Arsenide is chosen as 0.1 in the 
substrate and 0.2 in the cover. Since the refractive index in this binary 
semiconductor changes with x as [21]: 
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2091.071.059.3 xxn +−=                    (27) 

 
the chosen composition values result in refractive indices of 
nf=3.59>ns=3.524>nc=3.43 which satisfy the universal condition of 
waveguiding [19]. The relative refractive index is ∆=2% and the asymmetry 
parameter is a=0.955. The film thickness of the smooth-interface waveguide is 
set as mh µ0.1= , which corresponds to the normalized frequency 

916.3986.2774.0tan )1(
1 =<=<= =

−
mcutoffVVa i.e., the considered 

waveguide supports propagation of only the fundamental TE0 mode. This result 
is confirmed by solving Eqs. (17) and (18) numerically, which results in a single 
solution characterizing the TE0 mode. The obtained eigenvalues are 
κf=1.398x106 m-1, γc=3.652x106 m-1, γs=2.233x106 m-1 and β=1.491x107 m-1 
which correspond to 56.3=effn  and 57.0=b b=0.57. The corresponding 

pitch of the corrugation is then Λ=0.211 µm. 
 

The corrugation structure of the core thickness h(z) corresponding to 
the fit-reflectivity spectrum R(β) shown in Fig. 7(b) is plotted in Fig. (9). This 
figure plots only the envelope of the spatial variation noting that each point 
represents amplitude of the corresponding rectangular section of length 

2Λ≈l . It is worth to note that the maximum value of the core thickness is 
hmax=1.031 µm which is less than the cutoff thickness hcutoff(m=1)=1.311 µm of 
mode m=1 as determined by Eq. (12). That is, the transverse modes are 
restricted to the fundamental one through the corrugated region. 
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Fig. (9): Spatial profile of the core thickness. 
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It might be useful to note that the length of the corrugated part (or the 
number of corrugated sections) is not a critical problem for fabrication of this 
type of structure like the case of multilayer reflector. The corrugation can be 
formed on the top core-interface by means of the electron beam-lithography 
technique [21]. The corrugation pitch can be increased to alleviate fabrication of 
the corrugation structure by choosing low-index materials for the waveguide 
(for silica, Λ=0.51 µm). 
 

4.4. Characteristics of a double-band (minus) reflector  

This example shows the superiority of aperiodic structures over 
periodic ones to achieve more than one stop band. In this example of double-
band reflectivity described by Eq. (21), the bandwidth is set as small as 

0
410.23 ββ −=∆  and the band separation is set as 2βζ ∆= , which 

correspond to wavelengths of 3.5 and 1.75nm, respectively. The approximated 
profile of ∆n(z) in Eq. (22) is modulated by a factor of u=3 in order to fit the 
calculated reflectivity R(λ) with the desired one R0(λ). Figure 10 indicates good 
fit of the spectra is shown in Fig. 10 in the higher values of R(λ), and Fig. 11(a) 
plots the designed spatial profile of the layer thickness ℓH

(i). The bandwidth of 
the calculated R(λ) gets wider at lower reflectivity values at the expense of the 
band separation ζ. Surprisingly, such effect reduces the minus-reflectivity 
(transmission) around the central wavelength λo=1.5 µm to ~0.6nm at T(λ)=-
3dB, as shown in the zoomed figure in Fig. 10. Such spectrum is a favorable 
property for use as transmission filter in WDM. It is worth to note that the fit of 
reflectivity spectra is improved by increasing ζ at the expense of β∆ . 
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Fig. (10): Comparison between the calculated and desired power reflection of aperiodic 

optical filter. Good fit is seen of higher values of R(λ) and narrow band 
transmission is obtained. The inset represents the transmission spectrum. 
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Such transmission filter can be realized by a corrugated waveguide 
structure. The profile of the core thickness h(z) is shown in Fig. 11(b), which is 
much deeper than the single-band case. In this case, higher transverse modes are 
expected to propagate down the filter. Such profile amplitude can be reduced by 
increasing the asymmetry parameter a. 
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Fig. (11): Spatial profiles of: (a) the core thickness h(z) of the waveguide structure and 

(b) the layer thickness ℓH
(i) of the multilayer structure for the double-band 

filter with optical length of 2.0 mm. 
 

5. Conclusions: 

We proposed reflection filters with bandwidth ≤ 1 nm for use in 
wavelength-division-multiplexed optical communications. The filter was 
demonstrated in both multilayer and waveguide structures. The present 
synthesis model employs aperiodic variation of the refractive index. We 
achieved reflectors with 97% reflectivity, bandwidth of ≤  1 nm and low side-
lobes (<-13dB) using pairs of GaAs-AlAs multilayers and GaAs/AlGaAs 
waveguides with a corrugated structure on the upper interface of the core. We 
also demonstrated accomplishment of two-band reflectors for use as minus 
(transmission) filters. The 3dB band width of this filter is 0.5nm with 99 % 
maximum transmission. 
 

References: 

1. M. M. Liu, “Principles and applications of optical communications”, 
(McGraw-Hill, New York, 1966) 

2. Yariv: IEEE J. Quantum Electron. QE-9, 919, (1973). 
3. F. W. Dabby, M. A. Saifi and A. Kestenbaum: Appl. Phys. Lett. 22, 190, 

(1973). 
4. R. Schubert: J. Appl. Phys. 45, 209, (1974). 



Egypt. J. Solids, Vol. (28), No. (1), (2005) 139

5. D. C. Flanders, H. Kogelnik, R. V. Schmidt and C. V. Shank: Appl. Phys. 
Lett. 24, 194, (1974).  

6. R. V. Schmidt, D. C. Flanders, C. V. Shank and R. D. Standley: Appl. 
Phys. Lett. 25, 651 (1974).  

7. S. Kim and C. G. Fonstad, IEEE J. Quantum Electron. QE-15, 1405, 
(1979). 

8. A. Bakhtazad, H. Abiri and M. H. Rahnavard: J. Lightwave Tech. 13, 1780, 
(1995). 

9. Hill K. O., Appl. Opt. 13, 1853, (1974). 
10. S. Hong, J. B. Shellan, A. C. Livanos, A. Yariv and A. Katzir, Appl. Phys. 

Lett. 4, 276, (1977). 
11. J. B. Shellan, C. S. Hong and A. Yariv: Optics Commun. 23 (1977) 398. 
12. Y. Shibata, T. Tamamura, S. Oku and Y. Kondo: IEEE Photonics Tech. 

Lett. 6, 1222, (1994).  
13. K. A. Winick and J. R. Roman, IEEE J. Quantum Electron. 26, 1918, 

(1990). 
14. M. Ahmed, M. Yamada and Y. Yamane, Opt. Rev. 3, 345, (1996). 
15. M. Yamada and Y. Yamane, Opt. Rev. 3, 512, (1996). 
16. M. Ahmed and M. Yamada, Opt. Rev. 4, 402, (1997). 
17. M. Born and E. Wolf, “Principles of Optics”, 6-th ed., Pergamon Press, 

Oxford (1989). 
18. P.Yeh, “Optical Waves in Layered Media”, J. Wiley and Sons, New York, 

(1988). 
19. R. Pollock, “Fundamentals of Optoelectronics”, McGraw-Hill, New York, 

(1995). 
20. K. J. Ebeling, Integrated Optoelectronics, (Springer-Verlag, Berlin, 1993). 
21. Y. Suematsu and A. R. Adams, “Handbook of semiconductor lasers and 

photonic integrated circuits”, Chapman and Hall, London (1994) 
 


