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In this paper, the phase properties in Pegg-Barnett formalism are 
considered. The phase distribution is calculated and discussed for the excited 
binomial state, the even-excited binomial state and the odd-excited binomial 
state. 
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1. Introduction: 

Classically there are two theories for light: waves (Huygens) and 
corpuscular (Newton). Since the advent of quantum mechanics the concept of 
the photon had been introduced. Light consists of photons carrying energy 
quanta proportional to the frequency ωh=E , and momentum proportional to 
the wave number ckp h= . The quantum description of the state of light 
depends on the quantum description of the photon. The state that describes n  
photons is the Fock number state n , which is an eigenstate of the photon 

number operator aan ˆˆˆ †= , i.e. nnnaa =ˆˆ †  where â , ( 1ˆ −= nnna ) 

and †â , ( 11ˆ † ++= nnna ) are the annihilation and creation operators of 
one photon, respectively. However, another state was introduced by Glauber 
(1963) see for example [1, 2] namely the coherent state which describes a field 
with a fixed phase while the number of photons is not fixed. However, there is 
an average value for this photon number. The number of photons has a 
Poissonian distribution. This state (the coherent state) α , has the photon 

number distribution 
n

n
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enP
!

)(
−

= , where n  is the mean photon number 
2α=n , α  is a complex number, whose modulus is the amplitude of the field 

mode, and its phase is the phase of the state. This state describes very closely 
the laser field. Theoretical descriptions for other states followed. 
A state was introduced which bridges the gab between the Fock state and the 
coherent state by taking mathematical limits. This state is the binomial state 
(BS) [3], where the probability distribution function for finding $n$ photons is 
given by the binomial distribution, 



























>

≤−
−

=

−

Mn

Mn
nMn

M

nP

nMn

for0

for)1(
)!(!

!

)(

22 ηη

  (1) 

 
A realization of such state can be thought of as a 2-level atom in its excited state 
that emits a photon to go down to its ground state, if the probability of detecting 

a photon is 
2||η  then failure to detect such photon is )1( 2η− . Hence the 
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probability to detect n  counts out of M  experiments is given by equation (1). 
It is easy to see that as 0→η  then 1)0( =P , 0)( =nP , 0≠n , while when 

1→η  then 1)( =MP , 0)( =nP  , Mn ≠ , while when ∞→M , 0→η  

such that nM →
2η  a fixed number, we get 

n
n

n
n

enP
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=  the Poissonian 

distribution. The state that describes this situation is the BS [3] η,M  given 
by 
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Another state introduced to interpolate between the thermal and the 

coherent states, is the negative binomial state (NBS) [4-6]. As further example, 
the generalized geometric state interpolates between the number state and the 
(non-pure) chaotic state [7-9]. Furthermore, the even (odd) BS interpolates, 
between the even (odd) coherent state and the even (odd) number state [10,11]. 
It was reported that under suitable conditions, superposition of coherent states 
could be produced if a coherent state is allowed to propagate through an 
amplitude dispersive medium [12]. Thus quantum superposition of BS can be 
produced in the same way, since the BS tends to a coherent state as a limiting 
case. It would be interesting to refer to the excited binomial states (EBS) of the 
radiation field, which can be generated by repeated application of the photon 
creation operator on BS [13]. They reduce to Fock states and excited coherent 
states (ECS) in certain limits and can be viewed as intermediate states between 
Fock states and the ECS [13]. Also, the odd-excited binomial states (OEBS) and 
the even excited binomial states (EEBS) of the radiation field which are 
introduced by repeated application of the photon creation operator on EBS. 
These states interpolate between the odd (even) number state and the odd (even) 
displaced Fock state [14]. 

 
The aim of this work is to study the phase properties for both EBS, 

EEBS and OEBS in the Pegg-Barnett formalism [15, 16]. 
 
In section 2 the phase distribution function is introduced. In section 3 

the phase distribution related to the EBS is calculated. Also, for the states of 
EEBS and OEBS the phase distributions function are calculated in sections  
4, 5. Finally conclusion is given in section 6. 
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2. The phase distribution function: 

The notion of the phase in quantum optics has found renewed strong 
interest because of the existence of phase-dependent quantum noise. In this 
section, the phase properties using the Pegg-Barnett method [15, 16] are 
studied. This is based on the phase states Θ , which are defined as  

∑
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θ ,                         (3) 
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The value of 0θ  is arbitrary; it indicates a specific bases set of )1( +s  mutually 
orthogonal phase states. In fact the phase states mΘ  are eigenstates of 

Hermitian phase operator θΦ̂  given by 
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The state of the form 
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is called a partial phase state [15], where nb  are real and positive and Ψ  is a 
phase. From equations (3, 6), one can calculate the expectation value and the 
variance for the phase operator θΦ̂  with respect to the partial phase state; we 
have 

Ψ=Φθ
ˆ                                                               (7) 

∑∑ −
−

+=Φ∆
−

> m

mn
mn

mn mn
bb

2

)(2
2

)(
)1(

4
3

ˆ π
θ             (8) 

 
The phase probability distribution for the partial phase state is given as  

 
2

)( bP mΘ=θ                                                   (9) 
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Since the density of phase states is 
π2

1+s , thus in the continuum limit ∞→s , 

equation (9) reduces to 
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In what follows one calculate this function for different states. 
 
3. The phase distribution function of EBS: 

The EBS is defined as [13] 
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with λ  the normalization constant given by  
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Here n  and M  are integers. η  is in general complex with 10 ≤≤ η . By 
using equations. (10) and (11) the phase distribution function for this state is 
given by  
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In Fig. (1), )(θP  given by equation. (14) is plotted against the parameter η , 
for 5=M  and 1=k . In this figure we can see that there is only one stretching 

peak along the η  axis at 0=θ . At 0=η , then 
π

θ
2
1)( =P , and the phase is 
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lost. But at η  increases, the phase starts to build up, and the information about 

the phase can be attained. At η  become 1, then 
π

θ
2
1)( =P . 

From Fig. (2), we can see that as k  increases with constant M , then the 
maximum value of )(θP , at 0=θ  moves to lower values of η . Keeping k  

constant and varying M , the maximum values of )(θP  at 0=θ  increases 
slightly as M  increase. 

 
 
4. The phase distribution function of EEBS: 

The EEBS is introduced through the following definition 

∑ +′= knkBMk M
ne

)(,, λη                                    (15) 

such that kn +  are always even. There are the following cases 

(i) even  k  i.e. 02kk =   
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2
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 being the largest integer less than or equal to 2
M

. eλ  is the 

normalization constants of EEBS for k  even. M
nB2  is the probability amplitudes 

of even excited binomial distribution. The normalization constant of this state 
can be written as 
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By applying equations (10) and (15), the phase distribution function for this 
state is given by  
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(ii) odd k  i.e. 12 1 += kk  
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eλ′  is the normalization constants of EEBS for k  odd. Also M
sB 12 −  is the 

probability amplitudes of even excited binomial distribution. The normalization 
constant of this case is given by 
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By applying equations (10) and (20), the phase distribution function for this 
state reads, 
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In Fig. (3), )(θP  given by equations (19, 23) is plotted against the parameter 
η , for 8=M  and 2=k . We can see that there are two peaks along the η  
axis at 0=θ  and π . Calculations of the effect of the values of M  and k  on 
the maximum values of )(θP  are summarized. In general, the same trend is 
noticed as the earlier case of the EBS. 
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5. The phase distribution function of OEBS: 

The OEBS can be introduced through the following definition 
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such that kn +  are always odd [14]. Similarly, we have the following two 
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oλ  is the normalization constant of OEBS for k  even, given by 
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By using equations (10) and (25), the phase distribution function for this state is 
given by  
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(ii) odd k  i.e. 12 1 += kk  
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eλ′  is the normalization constants of OEBS for k  odd, given by 
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By using equations (10) and (29), the phase distribution function for this state is 
given by  
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In Fig. (4), )(θP  given by equations (28, 32) is plotted against the parameter 
η , for 15=M  and 1=k . Again, we see that there are two stretching peaks 
along the η  axis at 0=θ  and π . The effect of the values of M  and k  on 

the maximum values of )(θP  is the same with the cases of EBS and EEBS.  
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6. Conclusion: 

In this article, the phase distribution function in the sense of Pegg-
Barnett formalism has been calculated and plotted for the cases of the EBS, 
EEBS and the OEBS. This investigation shows a loss of phase information 

( π
θ

2
1)( =P ) as 0→η  or 1→η  which reflects the fact of having a Fock 

state. But for 10 <<η  peak accurse around 0=θ , for the case of EBS, and 
two peaks at 0=θ  and π± , for the cases of EEBS and OEBS which means 
that the phase is built up by adding more Fock states. This means that these 
states are partially coherent phase states. 
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