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Abstract 

Digital Fringe projection profilometry (DFPP) is a noncontact, fast, accurate and flexible 

technique for 3D measurements. Phase calculation is an important step that affects the 

accuracy of measurements. in phase calculation, the critical source of error is phase error 

due to nonlinear gamma effect of the system. This paper introduces an experimental 

investigation of the nonlinear gamma effect of DFPP system as well as the effect of 

system parameters, such as fringe intensity, fringe period, surface distance from the 

camera and projector and finally the ambient illumination, on phase error and 

consequently system measurements. Fringe patterns are generated using Matlab 2018a and 

projected by digital laser projector. The deformed patterns are captured using colored 

CCD camera. Phase shifting technique is used to calculate phase map. The system shows a 

linear response in the intensity range (50-220) and has small phase error without any 

compensation for nonlinear gamma effect. The phase error of the system slightly increases 

with increasing fringe period and the surface distance from the camera and projector, 

while it is nearly constant with ambient illumination changes from dark to median level 

and shows a bigger change if the ambient is completely illuminated. In the worst 

conditions the phase error does not accedes 0.0387 rad without any compensation for 

nonlinear gamma effect, make the system a useful tool for 3D measurements in different 

working fields. 

Keywords: Digital Fringe Projection Profilometry (DFPP), Phase error, Focus-free laser 
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1- Introduction 

Three-dimensional (3D) measurements have various applications in different fields such 

as biomedical engineering, machine vision, medical practice, reserve engineering, quality 

assurance, biometric security, and entertainment 
[1-3]

. 3D shape could be retrieved using 

contact techniques such as Coordinate Measuring Machine (CMM). These techniques are 

limited by slow performance, obligation of touching the measured object and high cost. 

Non-contact techniques such as time-of-flight (TOF) method, interferometry method, 

Digital Fringe projection profilometry (DFPP), and laser scanning method have the 

advantage of overcoming the previous limitations 
[3,4]

. DFPP is one of the most used non-

contact techniques for 3D imaging 
[5]

 due to its speed, accuracy, and flexibility 
[6-9]

 .  

DFPP system mainly consists of digital projector and CCD camera which are placed at a 

distance away from a measured object with certain geometrical design. Digital projector is 

used to project uniform fringe patterns, generated by MATLAB 2018a, on the object 

surface. These patterns are deformed due to the object height distribution. Image of the 

deformed patterns is captured by CCD camera 
[10,11]

 then analyzed by one of fringe 

analysis techniques such as Fourier transform 
[12]

, wavelet transform 
[13]

, and phase 

shifting technique 
[14]

 to obtain phase map, then unwrapped to get continuous phase map. 

Finally, a calibration step is done to transform from continuous phase map to X, Y, Z 

coordinates 
[15,16]

. 

Performance of DFPP system is characterized by many factors such as resolution, speed 

and the most important factor is accuracy. The accuracy is affected by several factors such 

as system components, system calibration, geometric and surface characteristics of tested 

object, system set up and ambient illumination 
[3]

.  

The height of the object (h) could be related to phase shift caused by the object by the 

following relation 

  
    

       
        (1) 

where :- 

L is the distance between the reference plane and the camera (C) and projector (P).  

D is the distance between the optical axis of the camera and projector. 

F is the frequency of fringe patterns 

∆φ is the phase shift value caused by the object height 
[16]

, these parameters are shown 

schematically in figure (2) 

 Since L and D, and f are fixed values for the system, the accuracy of height measurements 

depends on the accuracy of calculating the phase shift caused by the object height.  

It is known that projector and CCD camera do not response linearly to input intensities, 
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this behavior is known as nonlinear gamma response. Therefore, when sinusoidal fringes 

are used, they are not projected or captured with the same generated ideal waveform 

causing a phase error when phase is retrieved 
[17]

. Determination of phase shift is mainly 

affected by phase error due to nonlinear gamma effect. Many researchers attempted to 

compensate phase error using active methods by modifying the fringe intensities before 

projecting 
[18,19]

 or by passive methods after capturing fringe images and correcting the 

phase map 
[20-21]

. In spite of the many attempts for compensating phase error, there is a 

lacking in researches investigating the relation between system parameters i.e., fringe 

intensity, fringe period, surface distance from the projector and camera and Ambient 

illumination, and phase error. 

In this study a new type of projector, laser projector, is used to project digital fringes. 

Laser projector has the advantage of focus-free projection. It does not need any special 

type of lenes to control the depth of field, but it already projects focused images at 

distance up 1500 mm without any additional lenses or manual adjusting. This work 

introduces experimental investigation of the effect of system parameters (fringe intensity, 

fringe period and surface distance from projector and camera) and ambient illumination 

level on the phase error. The rest of this paper is organized as following: section 2 presents 

the principle of three steps phase-shifting algorithm to calculate the phase map. Section 3 

explains the experimental work and results, and Section 4 gives the conclusion of this 

work. 

2- Three steps phase-shifting algorithm  

Fringe analysis is an important step that control the performance of any DFP system. 

Among fringe analysis techniques phase shifting profilometry (PSP) has the advantages of 

being retrieve accurate phase, can achieve pixel-wise phase measurement with high 

resolution and robust to ambient illumination and varying surface reflectivity, so (PSP) 

found its way to be one of the most widely used fringe analysis techniques 
[22]

. Many 

different algorithms were developed such as standard N-step phase shifting algorithm, 

double three-step phase shifting algorithm, trapezoidal phase shifting, triangular phase 

shifting, and Hariharan 5-step phase shifting 
[23]

. In general cases, at least three phase 

shifted fringe patterns image are needed when standard N-step phase shifting algorithm is 

used to calculate phase map. Intensity of the three waves shifted by 2π/3 rad are I1, I2, I3 as 

shown in figure (1) represented by the following equations 

I1(x,y) = I
’
(x,y) + I

’’
(x,y)cos{ φ(x,y)- 2π/3}               (2), 

I2(x,y) = I
’
(x,y) + I

’’
(x,y)cos{ φ(x,y)}                         (3), 

I3(x,y) = I
’
(x,y) + I

’’
(x,y)cos{ φ(x,y)+ 2π/3}               (4), 
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Where I
’
(x,y) is the average intensity, I

’’
(x,y) is the intensity modulation and φ(x,y) is 

the phase. By solving the three equations the extracted phase will be 

φ(x,y) = tan
-1

 [
√  (     )

(         )
]                                              (5). 

The calculated phase values are ranging from - π to π, so a suitable phase unwrapping 

algorithm is used to remove 2π discontinuities.   

 

Figure (1). Three sinusoidal waves shifted by 2π/3 rad. I1 in red color, I2 in green color, and I3 in blue color. 

3- Experimental work and Results. 

In this work a colored CCD camera Model EO-18112 manufactured by Edmund optics, a 

lens model FL#33-302 manufactured by Edmund optics, focus-free laser mobile pico 

projector Model MP-CL1A manufactured by Sony. This device emits class 3R laser with 

wavelength from 445 nm to 639 nm and beam divergence 4.5 mrad, and a computer 

manufactured by Dell, model latitude 5580 are used to perform the experimental work of 

this paper. The system setup is that the optical axis of the camera and the projector are 

parallel to each other as shown in the schematic diagram of the constructed fringe 

projection profilometry system illustrated in figure (2). 

 
Figure (2). Schematic diagram of fringe projection profilometry system 

3-1 Nonlinear gamma effect 

Nonlinear gamma response of the system was studied by projecting a set of green images 

generated with different intensities between 20 and 220 with fixed step value 10 on a 
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reference surface using the laser projector. This set of generated intensities is considered 

as input intensity (Io). These projected images are imaged by the colored CCD camera, 

then green channel of the image is separated to be used in the analysis. Average value of a 

small area (10 x 10) pixels in the center of the captured images is calculated and 

considered as the output intensity (I). Figure (3) shows nonlinear gamma effect curve. The 

relation between (Io) and (I) is represented by a polynomial of third order.  

I = (-1.5903) x10
-5

 (Io)
3
 + 0.00718 (Io)

2
 + 0. 14429 (Io) - 2.777                         (6) 

In the following section effect of fringe intensity range on phase error value will be 

studied. 

                        

Figure (3). Nonlinear gamma effect curve.  polynomial fitting for intensity range (20-220).  

3-1 Effect of fringe intensity 

Effect of fringe intensity on phase error is investigated at different intensity amplitudes [ 

(25-150), (25-175), (25-200), (25-220), (50-150), (50-175), (50-200) and (50-220)] using 

three sinusoidal fringe images shifted by 2π/3 of each intensity amplitude projected on a 

reference surface as shown in figure (4). Fringe images were captured by the camera then, 

phase was calculated using equation (5) and unwrapped to remove 2π discontinuities 

Unwrapping was done using a free Matlab code based on the reference 
[24]

. Unwrapped 

phase takes the range between 0 and nπ and the relation between unwrapped phase and 

pixels coordination is linear. For better visualization of phase error, a linear fitting, for the 

pixels- unwrapped phase relation, is calculated and subtracted from the measured 

unwrapped phase values then the final phase error is calculated by obtaining Root Mean 

Square (RMS) of the resulting data. Figure (5) shows phase error at 500
th

 row of the 

unwrapped phase map associated with each intensity range 
[25]

. RMS values of phase error 

at each intensity are listed in table (1). Figure (6) shows that when intensity lower limit is 

25, the (RMS) value of phase error decreases from 0.0412 to 0.0243 rad as the upper limit 
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of fringe amplitude increases. At the same time, when lower limit value is raised to 50 the 

phase error is nearly constant with small RMS value does not accede 0.0234 rad whatever 

the upper limit is without any compensation for nonlinear gamma effect. This behavior 

indicates the more linearity of the system in intensity range (50-220) where the data could 

be fitted linearly as shown in figure (7).  

I = 1.14275 x (Io) – 44.0850                       (7) 

Since the intensity amplitude (50-220) has the lowest phase error, this range is used in the 

rest work of this paper. 

Intensity range (RMS) Phase error (rad) 

25-150 

25-175 

25-200 

25-220 

50-150 

50-175 

50-200 

50-220 

0.0412 

0.0350 

0.0335 

0.0243 

0.0227 

0.0220 

0.0234 

0.0220 

Table (1). RMS values of Phase error at different intensity ranges 

 
Figure (4). Captured fringe patterns images of different intensities. (25-150) (a), (25-175) (b), (25-200) (c), 

(25-220) (d), (50-150) (e), (50-175) (f), (50-200) (g), and (50-220) (h). 
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Figure (5). Phase error for intensity ranges. (25-150) (a), (25-175) (b), (25-200) (c), (25-220) (d), (50-150) 

(e), (50-175) (f), (50-200) (g), and (50-220) (h). 

 

Figure (6). Change of phase error of 500
th

 row of phase map at different intensity ranges. 
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Figure (7). Linear fitting of nonlinear gamma effect curve for intensity range (50-220). 

3-2 Effect of fringe period. 

To investigate how the fringe period affects the phase error, three sinusoidal fringe 

images shifted by 2π/3 and with intensity amplitude (50-220) and different fringe periods 

(25, 30, 35 and 40 pixels) are projected on a reference surface. Fringe images were 

captured by the camera as shown in figure (8) then, phase was calculated using equation 

(5) and unwrapped to remove 2π discontinuities. Figure (9) shows cross section of 500
th

 

row of the unwrapped phase map after removing slop for better showing phase error 

associated with each fringe period. Phase error is calculated accordingly, and RMS values 

are listed in table (2). When sinusoidal fringe patterns are used, each pixel will have a 

unique intensity value. If fringe period (2π) is represented by little number of pixels, the 

difference between the intensity of the adjacent pixels is large to some extent that the 

camera and projector sensors can easily differentiate, so the captured sinusoidal fringe 

image has a small deformation. Consequently, the phase error associated with small fringe 

periods is small. As the fringe period increases, the difference in intensity values of the 

adjacent pixels is reduced to some extent that the camera and projector sensors can’t 

differentiate correctly between them, cause the deformation of the captured sinusoidal 

fringes. As a result, the phase error increases by increasing the fringe period. This appears 

as increasing RMS value of phase error from 0.0228 rad at fringe period 25 pixels to 

0.0257 rad at fringe period 40 pixels.  
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Figure (8). Captured fringe patterns images of different fringe periods. (a) 25 pixels, (b) 30 

pixels, (c) 35 pixels, and (d) 40 pixels. 

 
Figure (9). Phase error of 500

th
 row for different fringe periods. 25 pixels (a), 30 pixels (b), 35 pixels (c) 

and 40 pixels (d). 

To show the effect of fringe period on phase error and system measurements, a 

cylindrical object is tested using fringe images with different periods (25, 30, 35 and 40 

pixels). Three sinusoidal fringe images shifted by 2π/3 of each fringe period are projected 

on a reference surface placed at 500 mm. images of projected fringes are captured by the 

camera and phase map is calculated using equation (5) and unwrapped at each fringe 

period. Again, the unwrapped phase maps are calculated with the presence of the object. 

Figure (10) shows the captured images of different fringe periods projected on the 

cylindrical object. The phase shift due to the object existence is calculated by subtracting 

the object unwrapped phase map and the reference unwrapped phase map at each fringe 
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period and listed in table (2). If the object surface is placed at certain distance, the lateral 

shift due to the object height is constant and represented by fixed number of pixels. At the 

same time, this number of pixels represent a different values of phase shift when fringe 

patterns with different fringe period is used. the value of phase shift due to the object 

height decreases as the fringe period increases as shown in figure (11). Because of 

increasing the phase error and decreasing phase shift with increasing fringe period, the 

error in phase calculation as a percentage of the measured value will increase from 

0.236% at fringe period 25 pixels to 0.425% at fringe period 40 pixels as shown in table 

(2). so, it is preferred to use fringe period with small number of pixels to get more accurate 

measurements. 

 

Figure (10). Captured images of different fringe period projected on test object. 25 pixels (a), 30pixels (b), 

35 pixels (c), and 40 pixels (d). 

 

 

Fringe period 

Pixels 

Phase error (RMS) 

 Rad 

Phase shift  

rad 

Error  

% 

25 

30 

35 

40 

0.0228 

0.0225 

0.0238 

0.0257 

9.6661 

8.0551 

6.8848 

6.0478 

0.236 

0.279 

0.346 

0.425 

Table (2). Phase error and phase shift at different fringe period. 
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Figure (11). Phase shift maps for different fringe periods. 25 pixels (a), 30 pixels (b), 35 pixels (c), and 40 

pixels (d). 

3-3 Surface distance to the camera and projector. 

   One of the geometrical parameters of the fringe projection profilometry system is the 

distance between the object surface and the system (camera & projector). This parameter 

is tested at 500, 1000, and 1500 mm. Three sinusoidal fringe images shifted by 2π/3, 

fringe period equals to 35 pixels and intensity amplitude (50-220) are projected on a 

reference surface at each distance.The camera parameters such as (lens aperture, gain, 

exposure time) need to be changed to get sharp and clear image of the fringe patterns. 

Fringe images were captured by the camera then, phase was calculated using equation (5) 

and unwrapped to remove 2π discontinuities. phase error is calculated at each distance and 

listed in table (3). Figure (12) shows phase error of 500
th

 row of the unwrapped phase map 

associated with distances. RMS values of phase error equals to 0.0237, 0.0251 and 0.0252 

rad at 500, 1000, and 1500 mm. The slight increasing in phase error with increasing the 

distance could be attributed increasing the noise from the surrounding area interring the 

camera sensor at greater distances. 
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Figure (12). Phase error at distances 500 mm (a), 1000 mm (b), and 1500 mm (c) 

To demonstrate the effect of distance on measurements, a cylindrical object is measured 

by projecting three sinusoidal fringe images shifted by 2π/3 and different fringe period 35 

pixels on a reference surface placed at distances 500, 1000, and 1500 mm, Figure (13) 

shows one captured image of tested object at each distance. Reference unwrapped phase 

map is calculated at each fringe period. Again, the unwrapped phase maps are calculated 

with the presence of the object. The phase shift due to the object existence is calculated by 

subtracting the object unwrapped phase map and the reference unwrapped phase map at 

each distance. As the distance between the object surface and (camera and projector) 

increases the camera field of view increases causing the object to be represented by a 

smaller number of pixels in x and y direction. Also, when fringes of the same period are 

used at all distances the value of phase shift due to the object height decreases as the 

distance increases as listed in table (3). Figure (14) shows the phase shift map at each 

distance. As a result, the error in phase as a percentage of the measured value increases as 

the distance between the object surface and the system increased. This behavior appears as 

more irregularities in the phase shift map, so to get more accurate measurements, the 

object should be measured at the minimum possible distance from the camera and 

projector.  

 Figure (13). Captured image of test object at different distances. 500 mm (a), 1000 mm (b), 1500 mm (c). 
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Distance 

Mm 

Phase error (RMS) 

 Rad 

Phase shift  

rad 

Error  

% 

500 

1000 

1500 

0.0237 

0.0251 

0.0252 

6.8990 

1.8287 

0.8849 

0.343 

1.372 

2.847 
 

Table (3). Phase error and phase shift values at different distances. 

 

Figure (14). Phase shift maps at different distances. 500 mm (a), 1000 mm (b), and 1500 mm (c). 

3-4 Ambient illumination level.   

Fringe projection profilometry is very simple technique that could be used in different 

fields with varied ambient illumination level so, it is useful to study how the illumination 

level of the ambient affects the phase error. The system is tested at three different 

illumination levels (dark, median, and complete illumination) by projecting three 

sinusoidal fringe patterns with fringe period equals to 35 pixels and intensity amplitude 

(50-200) shifted by 2π/3 on a reference surface placed 500 mm away from the (camera 

and projector). Phase map is calculated using equation (5) and unwrapped at each 

illumination level. Slope of 500
th

 row of unwrapped phase map is removed to show phase 

error as shown in figure (15). RMS values are calculated and listed in table (4). When the 

ambient illumination is changed to median level, the noise caused by the ambient light is 

small to cause a big change in the phase error. Whereas when the lab is completely 

illuminated the light source of the ambient gives higher noise level to the detected 

intensities and consequently, the phase measurements. As a result, the phase error value 
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slightly changes from 0.0230 to 0.0243 rad when ambient illumination is changed from 

dark to median level, but it shows bigger change when lab is completely illuminated 

reaching RMS value equals to 0.0387 rad.  

 

Figure (15). Phase error of 500
th

 row of unwrapped phase map at different ambient illumination levels. dark 

(a), median (b) and complete illumination (c). 

 

Ambient illumination 

level 

Phase error 

(RMS) 

 Rad 

Phase shift  

(rad) 

Error  

% 

Dark 

Median 

Completely illuminated 

0.0230 

0.0243 

0.0387 

6.8817 

6.8775 

6.9311 

0.334 

0.353 

0.558 
 

Table (4). Phase error and phase shift values at different ambient illumination levels.  

 

As a practical example to study the effect of changing phase error with ambient 

illumination level, a cylindrical object is measured using three sinusoidal fringe images 

with fringe period equals to 35 pixels and intensity amplitude (50-200) shifted by 2π/3. 

Figure (16) shows captured images of cylindrical object at different illumination level. 

Dark (a), median (b), and full illumination level (c). Again, phase shift due to the 

existence of the object is calculated as the previous section. The system parameters are 

kept constant so, the phase shift due to the object height is nearly constant as listed in table 

(4). Figure (17) shows the phase shift maps due to the object height at the three ambient 

illumination level. Because of increasing phase error and keeping the value of phase shift 

constant, the phase error as a percentage of the measured value increases from 0.334 % to 

0.558 % of the measured value as the illumination level changed from dark to complete 

illumination level. 
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Figure (16). Captured image of cylindrical object at different illumination level. Dark (a), median (b), and 

full illumination level (c). 

 

Figure (17). Phase shift at different ambient illumination levels, dark (a), median (b), and complete 

illumination (c). 
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To judge the accuracy of the system, the system is calibrated at the optimum conditions 

that results minimum phase error [fringe intensity (50-220), fringe period (35 pixels), 

surface distance from the system (500 mm), and dark illumination level]. A cylindrical 

object is reconstructed, and 3D map is shown in figure (18). Results are given in table (5).  

 

Figure (18). 3D reconstruction of the of cylindrical object. 

Nominal  

Dimension (z direction) 

Mm 

Average Measured 

value  

Mm 

Error  

mm 

Standard 

deviation  

Mm 

56.67 56.55 -0.12 ± 0.32 

Table (5). Measured value of z direction. 

Conclusion  

This paper introduces experimental investigation of the effect of system parameters fringe 

intensity, fringe period, surface distance from projector and camera and ambient 

illumination level on the phase error. The results could be summarized as following: 

The system shows a linear gamma response in the range (50-220) resulting in small phase 

error. In the worst case, phase error does not accede 0.0387 rad without any compensation 

for gamma effect. this is a small value compared with other digital projecting devices such 

as DLP devices which gives phase error equals to 0.116 rad [17] without the compensation 

for nonlinear gamma response. 

-  Phase error slightly increases from 0.0228 rad at fringe period 25 pixels to 0.0257 

rad at fringe period 40 pixels. The accuracy of system measurements will decrease with 

increasing the fringe period. 
 

-   The effect of surface distance to (camera and projector) is tested at 500, 1000, and 

1500 mm. The system shows small phase error with RMS value does not accede 0.0252 
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rad. The accuracy of system measurements will decrease with increasing object surface 

and the (camera and projector). 

- The system shows nearly constant small phase error 0.024 rad in dark and median 

level. This value increases to 0.0387 when the ambient is completely illuminated.  
 

The system gives accurate measurements with a simple setup suitable for measuring 

object in controlled and uncontrolled environment.  
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